weaviate.outputs
weaviate.outputs.aggregate
- class weaviate.outputs.aggregate.AggregateBoolean(count, percentage_false, percentage_true, total_false, total_true)[source]
Bases:
object
The aggregation result for a boolean property.
- Parameters:
count (int | None)
percentage_false (float | None)
percentage_true (float | None)
total_false (int | None)
total_true (int | None)
- count: int | None
- percentage_false: float | None
- percentage_true: float | None
- total_false: int | None
- total_true: int | None
- class weaviate.outputs.aggregate.AggregateDate(count, maximum, median, minimum, mode)[source]
Bases:
object
The aggregation result for a date property.
- Parameters:
count (int | None)
maximum (str | None)
median (str | None)
minimum (str | None)
mode (str | None)
- count: int | None
- maximum: str | None
- median: str | None
- minimum: str | None
- mode: str | None
- class weaviate.outputs.aggregate.AggregateGroup(grouped_by, properties, total_count)[source]
Bases:
object
The aggregation result for a collection grouped by a property.
- Parameters:
grouped_by (GroupedBy)
properties (Dict[str, AggregateInteger | AggregateNumber | AggregateText | AggregateBoolean | AggregateDate | AggregateReference])
total_count (int | None)
- properties: Dict[str, AggregateInteger | AggregateNumber | AggregateText | AggregateBoolean | AggregateDate | AggregateReference]
- total_count: int | None
- class weaviate.outputs.aggregate.AggregateGroupByReturn(groups)[source]
Bases:
object
The aggregation results for a collection grouped by a property.
- Parameters:
groups (List[AggregateGroup])
- groups: List[AggregateGroup]
- class weaviate.outputs.aggregate.AggregateInteger(count, maximum, mean, median, minimum, mode, sum_)[source]
Bases:
object
The aggregation result for an int property.
- Parameters:
count (int | None)
maximum (int | None)
mean (float | None)
median (float | None)
minimum (int | None)
mode (int | None)
sum_ (int | None)
- count: int | None
- maximum: int | None
- mean: float | None
- median: float | None
- minimum: int | None
- mode: int | None
- sum_: int | None
- class weaviate.outputs.aggregate.AggregateNumber(count, maximum, mean, median, minimum, mode, sum_)[source]
Bases:
object
The aggregation result for a number property.
- Parameters:
count (int | None)
maximum (float | None)
mean (float | None)
median (float | None)
minimum (float | None)
mode (float | None)
sum_ (float | None)
- count: int | None
- maximum: float | None
- mean: float | None
- median: float | None
- minimum: float | None
- mode: float | None
- sum_: float | None
- class weaviate.outputs.aggregate.AggregateReturn(properties, total_count)[source]
Bases:
object
The aggregation result for a collection.
- Parameters:
properties (Dict[str, AggregateInteger | AggregateNumber | AggregateText | AggregateBoolean | AggregateDate | AggregateReference])
total_count (int | None)
- properties: Dict[str, AggregateInteger | AggregateNumber | AggregateText | AggregateBoolean | AggregateDate | AggregateReference]
- total_count: int | None
- class weaviate.outputs.aggregate.AggregateText(count, top_occurrences)[source]
Bases:
object
The aggregation result for a text property.
- Parameters:
count (int | None)
top_occurrences (List[TopOccurrence])
- count: int | None
- top_occurrences: List[TopOccurrence]
- class weaviate.outputs.aggregate.GroupedBy(prop, value)[source]
Bases:
object
The property that the collection was grouped by.
- Parameters:
prop (str)
value (str | int | float | bool | List[str] | List[int] | List[float] | List[bool] | GeoCoordinate | None)
- prop: str
- value: str | int | float | bool | List[str] | List[int] | List[float] | List[bool] | GeoCoordinate | None
weaviate.outputs.backup
- class weaviate.outputs.backup.BackupStatus(*values)[source]
Bases:
str
,Enum
The status of a backup.
- STARTED = 'STARTED'
- TRANSFERRING = 'TRANSFERRING'
- TRANSFERRED = 'TRANSFERRED'
- SUCCESS = 'SUCCESS'
- FAILED = 'FAILED'
- CANCELED = 'CANCELED'
- pydantic model weaviate.outputs.backup.BackupStatusReturn[source]
Bases:
BaseModel
Return type of the backup status methods.
Create a new model by parsing and validating input data from keyword arguments.
Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.
self is explicitly positional-only to allow self as a field name.
- field backup_id: str [Required] (alias 'id')
- field error: str | None = None
- field path: str [Required]
- field status: BackupStatus [Required]
- _abc_impl = <_abc._abc_data object>
- class weaviate.outputs.backup.BackupStorage(*values)[source]
Bases:
str
,Enum
Which backend should be used to write the backup to.
- FILESYSTEM = 'filesystem'
- S3 = 's3'
- GCS = 'gcs'
- AZURE = 'azure'
- pydantic model weaviate.outputs.backup.BackupReturn[source]
Bases:
BackupStatusReturn
Return type of the backup creation and restore methods.
Create a new model by parsing and validating input data from keyword arguments.
Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.
self is explicitly positional-only to allow self as a field name.
- field backup_id: str [Required] (alias 'id')
- field collections: List[str] [Optional] (alias 'classes')
- field error: str | None = None
- field path: str [Required]
- field status: BackupStatus [Required]
- _abc_impl = <_abc._abc_data object>
weaviate.outputs.batch
- class weaviate.outputs.batch.BatchObjectReturn(_all_responses=<factory>, elapsed_seconds=0.0, errors=<factory>, uuids=<factory>, has_errors=False)[source]
Bases:
object
This class contains the results of a batch insert_many operation.
Since the individual objects within the batch can error for differing reasons, the data is split up within this class for ease use when performing error checking, handling, and data revalidation.
Note
Due to concerns over memory usage, this object will only ever store the last MAX_STORED_RESULTS uuids in the uuids dictionary and MAX_STORED_RESULTS in the all_responses list. If more than MAX_STORED_RESULTS uuids are added to the dictionary, the oldest uuids will be removed. If the number of objects inserted in this batch exceeds MAX_STORED_RESULTS, the all_responses list will only contain the last MAX_STORED_RESULTS objects. The keys of the errors and uuids dictionaries will always be equivalent to the original_index of the objects as you added them to the batching loop but won’t necessarily be the same as the indices in the all_responses list because of this.
- Parameters:
_all_responses (List[UUID | ErrorObject])
elapsed_seconds (float)
errors (Dict[int, ErrorObject])
uuids (Dict[int, UUID])
has_errors (bool)
- elapsed_seconds
The time taken to perform the batch operation.
- Type:
float
- errors
A dictionary of all the failed responses from the batch operation. The keys are the indices of the objects in the batch, and the values are the Error objects.
- Type:
- uuids
A dictionary of all the successful responses from the batch operation. The keys are the indices of the objects in the batch, and the values are the uuid_package.UUID objects.
- Type:
Dict[int, uuid.UUID]
- has_errors
A boolean indicating whether or not any of the objects in the batch failed to be inserted. If this is True, then the errors dictionary will contain at least one entry.
- Type:
bool
- property all_responses: List[UUID | ErrorObject]
A list of all the responses from the batch operation. Each response is either a uuid_package.UUID object or an Error object.
WARNING: This only stores the last MAX_STORED_RESULTS objects. If more than MAX_STORED_RESULTS objects are added to the batch, the oldest objects will be removed from this list.
- Type:
@deprecated
- elapsed_seconds: float = 0.0
- has_errors: bool = False
- _all_responses: List[UUID | ErrorObject]
- errors: Dict[int, ErrorObject]
- uuids: Dict[int, UUID]
- class weaviate.outputs.batch.BatchReferenceReturn(elapsed_seconds=0.0, errors=<factory>, has_errors=False)[source]
Bases:
object
This class contains the results of a batch insert_many_references operation.
Since the individual references within the batch can error for differing reasons, the data is split up within this class for ease use when performing error checking, handling, and data revalidation.
- Parameters:
elapsed_seconds (float)
errors (Dict[int, ErrorReference])
has_errors (bool)
- elapsed_seconds
The time taken to perform the batch operation.
- Type:
float
- errors
A dictionary of all the failed responses from the batch operation. The keys are the indices of the references in the batch, and the values are the Error objects.
- Type:
Dict[int, weaviate.collections.classes.batch.ErrorReference]
- has_errors
A boolean indicating whether or not any of the references in the batch failed to be inserted. If this is True, then the errors dictionary will contain at least one entry.
- Type:
bool
- elapsed_seconds: float = 0.0
- has_errors: bool = False
- errors: Dict[int, ErrorReference]
- class weaviate.outputs.batch.BatchResult[source]
Bases:
object
This class contains the results of a batch operation.
Since the individual objects and references within the batch can error for differing reasons, the data is split up within this class for ease use when performing error checking, handling, and data revalidation.
- objs
The results of the batch object operation.
- refs
The results of the batch reference operation.
- class weaviate.outputs.batch.ErrorObject(message, object_, original_uuid=None)[source]
Bases:
object
This class contains the error information for a single object in a batch operation.
- Parameters:
message (str)
object_ (BatchObject)
original_uuid (str | UUID | None)
- original_uuid: str | UUID | None = None
- message: str
- object_: BatchObject
- class weaviate.outputs.batch.ErrorReference(message, reference)[source]
Bases:
object
This class contains the error information for a single reference in a batch operation.
- Parameters:
message (str)
reference (BatchReference)
- message: str
- reference: BatchReference
weaviate.outputs.cluster
- class weaviate.outputs.cluster.Node(git_hash, name, shards, stats, status, version)[source]
Bases:
Generic
[Sh
,St
]The properties of a single node in the cluster.
- Parameters:
git_hash (str)
name (str)
shards (Sh)
stats (St)
status (str)
version (str)
- git_hash: str
- name: str
- shards: Sh
- stats: St
- status: str
- version: str
- class weaviate.outputs.cluster.Shard(collection, name, node, object_count, vector_indexing_status, vector_queue_length, compressed, loaded)[source]
Bases:
object
The properties of a single shard of a collection.
- Parameters:
collection (str)
name (str)
node (str)
object_count (int)
vector_indexing_status (Literal['READONLY', 'INDEXING', 'READY'])
vector_queue_length (int)
compressed (bool)
loaded (bool | None)
- collection: str
- name: str
- node: str
- object_count: int
- vector_indexing_status: Literal['READONLY', 'INDEXING', 'READY']
- vector_queue_length: int
- compressed: bool
- loaded: bool | None
weaviate.outputs.config
- weaviate.outputs.config.BM25Config
alias of
_BM25Config
- weaviate.outputs.config.CollectionConfig
alias of
_CollectionConfig
- weaviate.outputs.config.CollectionConfigSimple
alias of
_CollectionConfigSimple
- weaviate.outputs.config.GenerativeConfig
alias of
_GenerativeConfig
- class weaviate.outputs.config.GenerativeSearches(*values)[source]
Bases:
str
,BaseEnum
The available generative search modules in Weaviate.
These modules generate text from text-based inputs. See the docs for more details.
- AWS
Weaviate module backed by AWS Bedrock generative models.
- ANTHROPIC
Weaviate module backed by Anthropic generative models.
- ANYSCALE
Weaviate module backed by Anyscale generative models.
- COHERE
Weaviate module backed by Cohere generative models.
- DATABRICKS
Weaviate module backed by Databricks generative models.
- FRIENDLIAI
Weaviate module backed by FriendliAI generative models.
- MISTRAL
Weaviate module backed by Mistral generative models.
- NVIDIA
Weaviate module backed by NVIDIA generative models.
- OLLAMA
Weaviate module backed by generative models deployed on Ollama infrastructure.
- OPENAI
Weaviate module backed by OpenAI and Azure-OpenAI generative models.
- PALM
Weaviate module backed by PaLM generative models.
- AWS = 'generative-aws'
- ANTHROPIC = 'generative-anthropic'
- ANYSCALE = 'generative-anyscale'
- COHERE = 'generative-cohere'
- DATABRICKS = 'generative-databricks'
- DUMMY = 'generative-dummy'
- FRIENDLIAI = 'generative-friendliai'
- MISTRAL = 'generative-mistral'
- NVIDIA = 'generative-nvidia'
- OLLAMA = 'generative-ollama'
- OPENAI = 'generative-openai'
- PALM = 'generative-palm'
- XAI = 'generative-xai'
- weaviate.outputs.config.InvertedIndexConfig
alias of
_InvertedIndexConfig
- weaviate.outputs.config.MultiTenancyConfig
alias of
_MultiTenancyConfig
- class weaviate.outputs.config.ReplicationDeletionStrategy(*values)[source]
Bases:
str
,BaseEnum
How object deletions in multi node environments should be resolved.
- PERMANENT_DELETION
Once an object has been deleted on one node it will be deleted on all nodes in case of conflicts.
- NO_AUTOMATED_RESOLUTION
No deletion resolution.
- DELETE_ON_CONFLICT = 'DeleteOnConflict'
- NO_AUTOMATED_RESOLUTION = 'NoAutomatedResolution'
- TIME_BASED_RESOLUTION = 'TimeBasedResolution'
- weaviate.outputs.config.PQEncoderConfig
alias of
_PQEncoderConfig
- class weaviate.outputs.config.PQEncoderDistribution(*values)[source]
Bases:
str
,BaseEnum
Distribution of the PQ encoder.
- LOG_NORMAL
Log-normal distribution.
- NORMAL
Normal distribution.
- LOG_NORMAL = 'log-normal'
- NORMAL = 'normal'
- class weaviate.outputs.config.PQEncoderType(*values)[source]
Bases:
str
,BaseEnum
Type of the PQ encoder.
- KMEANS
K-means encoder.
- TILE
Tile encoder.
- KMEANS = 'kmeans'
- TILE = 'tile'
- weaviate.outputs.config.ReferencePropertyConfig
alias of
_ReferenceProperty
- weaviate.outputs.config.ReplicationConfig
alias of
_ReplicationConfig
- class weaviate.outputs.config.Rerankers(*values)[source]
Bases:
str
,BaseEnum
The available reranker modules in Weaviate.
These modules rerank the results of a search query. See the docs for more details.
- NONE
No reranker.
- COHERE
Weaviate module backed by Cohere reranking models.
- TRANSFORMERS
Weaviate module backed by Transformers reranking models.
- VOYAGEAI
Weaviate module backed by VoyageAI reranking models.
- JINAAI
Weaviate module backed by JinaAI reranking models.
- NVIDIA
Weaviate module backed by NVIDIA reranking models.
- NONE = 'none'
- COHERE = 'reranker-cohere'
- TRANSFORMERS = 'reranker-transformers'
- VOYAGEAI = 'reranker-voyageai'
- JINAAI = 'reranker-jinaai'
- NVIDIA = 'reranker-nvidia'
- weaviate.outputs.config.RerankerConfig
alias of
_RerankerConfig
- weaviate.outputs.config.ShardingConfig
alias of
_ShardingConfig
- weaviate.outputs.config.ShardStatus
alias of
_ShardStatus
- class weaviate.outputs.config.VectorDistances(*values)[source]
Bases:
str
,Enum
Vector similarity distance metric to be used in the VectorIndexConfig class.
To ensure optimal search results, we recommend reviewing whether your model provider advises a specific distance metric and following their advice.
- COSINE = 'cosine'
- DOT = 'dot'
- L2_SQUARED = 'l2-squared'
- HAMMING = 'hamming'
- MANHATTAN = 'manhattan'
- weaviate.outputs.config.VectorIndexConfigHNSW
alias of
_VectorIndexConfigHNSW
- weaviate.outputs.config.VectorIndexConfigFlat
alias of
_VectorIndexConfigFlat
- class weaviate.outputs.config.VectorIndexType(*values)[source]
Bases:
str
,Enum
The available vector index types in Weaviate.
- HNSW
Hierarchical Navigable Small World (HNSW) index.
- FLAT
Flat index.
- HNSW = 'hnsw'
- FLAT = 'flat'
- DYNAMIC = 'dynamic'
- class weaviate.outputs.config.Vectorizers(*values)[source]
Bases:
str
,Enum
The available vectorization modules in Weaviate.
These modules encode binary data into lists of floats called vectors. See the docs for more details.
- NONE
No vectorizer.
- TEXT2VEC_AWS
Weaviate module backed by AWS text-based embedding models.
- TEXT2VEC_COHERE
Weaviate module backed by Cohere text-based embedding models.
- TEXT2VEC_CONTEXTIONARY
Weaviate module backed by Contextionary text-based embedding models.
- TEXT2VEC_GPT4ALL
Weaviate module backed by GPT-4-All text-based embedding models.
- TEXT2VEC_HUGGINGFACE
Weaviate module backed by HuggingFace text-based embedding models.
- TEXT2VEC_OPENAI
Weaviate module backed by OpenAI and Azure-OpenAI text-based embedding models.
- TEXT2VEC_PALM
Weaviate module backed by PaLM text-based embedding models.
- TEXT2VEC_TRANSFORMERS
Weaviate module backed by Transformers text-based embedding models.
- TEXT2VEC_JINAAI
Weaviate module backed by Jina AI text-based embedding models.
- TEXT2VEC_VOYAGEAI
Weaviate module backed by Voyage AI text-based embedding models.
- TEXT2VEC_NVIDIA
Weaviate module backed by NVIDIA text-based embedding models.
- TEXT2VEC_WEAVIATE
Weaviate module backed by Weaviate’s self-hosted text-based embedding models.
- IMG2VEC_NEURAL
Weaviate module backed by a ResNet-50 neural network for images.
- MULTI2VEC_CLIP
Weaviate module backed by a Sentence-BERT CLIP model for images and text.
- MULTI2VEC_PALM
Weaviate module backed by a palm model for images and text.
- MULTI2VEC_BIND
Weaviate module backed by the ImageBind model for images, text, audio, depth, IMU, thermal, and video.
- MULTI2VEC_VOYAGEAI
Weaviate module backed by a Voyage AI multimodal embedding models.
- MULTI2VEC_NVIDIA
Weaviate module backed by NVIDIA multimodal embedding models.
- REF2VEC_CENTROID
Weaviate module backed by a centroid-based model that calculates an object’s vectors from its referenced vectors.
- NONE = 'none'
- TEXT2COLBERT_JINAAI = 'text2colbert-jinaai'
- TEXT2VEC_AWS = 'text2vec-aws'
- TEXT2VEC_COHERE = 'text2vec-cohere'
- TEXT2VEC_CONTEXTIONARY = 'text2vec-contextionary'
- TEXT2VEC_DATABRICKS = 'text2vec-databricks'
- TEXT2VEC_GPT4ALL = 'text2vec-gpt4all'
- TEXT2VEC_HUGGINGFACE = 'text2vec-huggingface'
- TEXT2VEC_MISTRAL = 'text2vec-mistral'
- TEXT2VEC_NVIDIA = 'text2vec-nvidia'
- TEXT2VEC_OLLAMA = 'text2vec-ollama'
- TEXT2VEC_OPENAI = 'text2vec-openai'
- TEXT2VEC_PALM = 'text2vec-palm'
- TEXT2VEC_TRANSFORMERS = 'text2vec-transformers'
- TEXT2VEC_JINAAI = 'text2vec-jinaai'
- TEXT2VEC_VOYAGEAI = 'text2vec-voyageai'
- TEXT2VEC_WEAVIATE = 'text2vec-weaviate'
- IMG2VEC_NEURAL = 'img2vec-neural'
- MULTI2VEC_CLIP = 'multi2vec-clip'
- MULTI2VEC_COHERE = 'multi2vec-cohere'
- MULTI2VEC_JINAAI = 'multi2vec-jinaai'
- MULTI2VEC_BIND = 'multi2vec-bind'
- MULTI2VEC_PALM = 'multi2vec-palm'
- MULTI2VEC_VOYAGEAI = 'multi2vec-voyageai'
- MULTI2VEC_NVIDIA = 'multi2vec-nvidia'
- REF2VEC_CENTROID = 'ref2vec-centroid'
- weaviate.outputs.config.VectorizerConfig
alias of
_VectorizerConfig
weaviate.outputs.data
- class weaviate.outputs.data.DeleteManyObject(uuid, successful, error=None)[source]
Bases:
object
This class contains the objects of a delete_many operation.
- Parameters:
uuid (UUID)
successful (bool)
error (str | None)
- error: str | None = None
- uuid: UUID
- successful: bool
- class weaviate.outputs.data.DeleteManyReturn(failed, matches, objects, successful)[source]
Bases:
Generic
[T
]This class contains the results of a delete_many operation..
- Parameters:
failed (int)
matches (int)
objects (T)
successful (int)
- failed: int
- matches: int
- objects: T
- successful: int
- class weaviate.outputs.data.Error(message, code=None, original_uuid=None)[source]
Bases:
object
This class represents an error that occurred when attempting to insert an object within a batch.
- Parameters:
message (str)
code (int | None)
original_uuid (str | UUID | None)
- code: int | None = None
- original_uuid: str | UUID | None = None
- message: str
weaviate.outputs.query
- weaviate.outputs.query.FilterByCreationTime
alias of
_FilterByCreationTime
- weaviate.outputs.query.FilterById
alias of
_FilterById
- weaviate.outputs.query.FilterByProperty
alias of
_FilterByProperty
- weaviate.outputs.query.FilterByRef
alias of
_FilterByRef
- weaviate.outputs.query.FilterByUpdateTime
alias of
_FilterByUpdateTime
- pydantic model weaviate.outputs.query.GeoCoordinate[source]
Bases:
_WeaviateInput
Input for the geo-coordinate datatype.
Create a new model by parsing and validating input data from keyword arguments.
Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.
self is explicitly positional-only to allow self as a field name.
- field latitude: float [Required]
- Constraints:
ge = -90
le = 90
- field longitude: float [Required]
- Constraints:
ge = -180
le = 180
- _abc_impl = <_abc._abc_data object>
- class weaviate.outputs.query.BM25OperatorAnd[source]
Bases:
BM25OperatorOptions
Define the ‘And’ operator for keyword queries.
- operator: ClassVar[Any] = 2
- class weaviate.outputs.query.BM25OperatorOr(minimum_should_match)[source]
Bases:
BM25OperatorOptions
Define the ‘Or’ operator for keyword queries.
- Parameters:
minimum_should_match (int)
- operator: ClassVar[Any] = 1
- minimum_should_match: int
- weaviate.outputs.query.ListOfVectorsQuery
alias of
_ListOfVectorsQuery
- class weaviate.outputs.query.MetadataReturn(creation_time=None, last_update_time=None, distance=None, certainty=None, score=None, explain_score=None, is_consistent=None, rerank_score=None)[source]
Bases:
object
Metadata of an object returned by a query.
- Parameters:
creation_time (datetime | None)
last_update_time (datetime | None)
distance (float | None)
certainty (float | None)
score (float | None)
explain_score (str | None)
is_consistent (bool | None)
rerank_score (float | None)
- certainty: float | None = None
- creation_time: datetime | None = None
- distance: float | None = None
- explain_score: str | None = None
- is_consistent: bool | None = None
- last_update_time: datetime | None = None
- rerank_score: float | None = None
- score: float | None = None
- class weaviate.outputs.query.MetadataSingleObjectReturn(creation_time, last_update_time, is_consistent)[source]
Bases:
object
Metadata of an object returned by the fetch_object_by_id query.
- Parameters:
creation_time (datetime)
last_update_time (datetime)
is_consistent (bool | None)
- creation_time: datetime
- last_update_time: datetime
- is_consistent: bool | None
- class weaviate.outputs.query.Object(uuid, metadata, properties, references, vector, collection)[source]
Bases:
Generic
[P
,R
],_Object
[P
,R
,MetadataReturn
]A single Weaviate object returned by a query within the .query namespace of a collection.
- class weaviate.outputs.query.ObjectSingleReturn(uuid, metadata, properties, references, vector, collection)[source]
Bases:
Generic
[P
,R
],_Object
[P
,R
,MetadataSingleObjectReturn
]A single Weaviate object returned by the fetch_object_by_id query.
- class weaviate.outputs.query.GroupByObject(uuid, metadata, properties, references, vector, collection, belongs_to_group)[source]
Bases:
Generic
[P
,R
],_Object
[P
,R
,GroupByMetadataReturn
]A single Weaviate object returned by a query with the group_by argument specified.
- Parameters:
- belongs_to_group: str
- uuid: UUID
- vector: Dict[str, List[float] | List[List[float]]]
- collection: str
- class weaviate.outputs.query.GroupByReturn(objects, groups)[source]
-
The return type of a query within the .query namespace of a collection with the group_by argument specified.
- objects: List[GroupByObject[P, R]]
- class weaviate.outputs.query.Group(name, min_distance, max_distance, number_of_objects, objects, rerank_score)[source]
-
A group of objects returned in a group by query.
- Parameters:
name (str)
min_distance (float)
max_distance (float)
number_of_objects (int)
objects (List[GroupByObject[P, R]])
rerank_score (float | None)
- name: str
- min_distance: float
- max_distance: float
- number_of_objects: int
- objects: List[GroupByObject[P, R]]
- rerank_score: float | None
- class weaviate.outputs.query.GenerativeObject(generated, generative, uuid, metadata, properties, references, vector, collection)[source]
Bases:
Generic
[P
,R
],Object
[P
,R
]A single Weaviate object returned by a query within the generate namespace of a collection.
- Parameters:
generated (str | None)
generative (GenerativeSingle | None)
uuid (UUID)
metadata (M)
properties (P)
references (R)
vector (Dict[str, List[float] | List[List[float]]])
collection (str)
- property generated: str | None
The single generated text of the object.
- __generated: str | None
- generative: GenerativeSingle | None
- uuid: UUID
- vector: Dict[str, List[float] | List[List[float]]]
- collection: str
- class weaviate.outputs.query.GenerativeReturn(generated, objects, generative)[source]
-
The return type of a query within the generate namespace of a collection.
- Parameters:
generated (str | None)
objects (List[GenerativeObject[P, R]])
generative (GenerativeGrouped | None)
- property generated: str | None
The grouped generated text of the objects.
- __generated: str | None
- objects: List[GenerativeObject[P, R]]
- generative: GenerativeGrouped | None
- class weaviate.outputs.query.GenerativeGroupByReturn(objects, groups, generated)[source]
-
The return type of a query within the .generate namespace of a collection with the group_by argument specified.
- Parameters:
objects (List[GroupByObject[P, R]])
groups (Dict[str, GenerativeGroup[P, R]])
generated (str | None)
- objects: List[GroupByObject[P, R]]
- groups: Dict[str, GenerativeGroup[P, R]]
- generated: str | None
- class weaviate.outputs.query.GenerativeGroup(name, min_distance, max_distance, number_of_objects, objects, rerank_score, generated)[source]
Bases:
Generic
[P
,R
],Group
[P
,R
]A group of objects returned in a generative group by query.
- Parameters:
name (str)
min_distance (float)
max_distance (float)
number_of_objects (int)
objects (List[GroupByObject[P, R]])
rerank_score (float | None)
generated (str | None)
- generated: str | None
- name: str
- min_distance: float
- max_distance: float
- number_of_objects: int
- objects: List[GroupByObject[P, R]]
- rerank_score: float | None
- weaviate.outputs.query.PhoneNumberType
alias of
_PhoneNumber
weaviate.outputs.rbac
- pydantic model weaviate.outputs.rbac.BackupsPermissionOutput[source]
Bases:
_BackupsPermission
Create a new model by parsing and validating input data from keyword arguments.
Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.
self is explicitly positional-only to allow self as a field name.
- _abc_impl = <_abc._abc_data object>
- pydantic model weaviate.outputs.rbac.ClusterPermissionOutput[source]
Bases:
_ClusterPermission
Create a new model by parsing and validating input data from keyword arguments.
Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.
self is explicitly positional-only to allow self as a field name.
- _abc_impl = <_abc._abc_data object>
- pydantic model weaviate.outputs.rbac.CollectionsPermissionOutput[source]
Bases:
_CollectionsPermission
Create a new model by parsing and validating input data from keyword arguments.
Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.
self is explicitly positional-only to allow self as a field name.
- _abc_impl = <_abc._abc_data object>
- pydantic model weaviate.outputs.rbac.DataPermissionOutput[source]
Bases:
_DataPermission
Create a new model by parsing and validating input data from keyword arguments.
Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.
self is explicitly positional-only to allow self as a field name.
- _abc_impl = <_abc._abc_data object>
- pydantic model weaviate.outputs.rbac.NodesPermissionOutput[source]
Bases:
_NodesPermission
Create a new model by parsing and validating input data from keyword arguments.
Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.
self is explicitly positional-only to allow self as a field name.
- _abc_impl = <_abc._abc_data object>
- pydantic model weaviate.outputs.rbac.RolesPermissionOutput[source]
Bases:
_RolesPermission
Create a new model by parsing and validating input data from keyword arguments.
Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.
self is explicitly positional-only to allow self as a field name.
- _abc_impl = <_abc._abc_data object>
- class weaviate.outputs.rbac.RoleScope(*values)[source]
Bases:
str
,BaseEnum
Scope of the role permission.
- MATCH = 'match'
- ALL = 'all'
- pydantic model weaviate.outputs.rbac.UsersPermissionOutput[source]
Bases:
_UsersPermission
Create a new model by parsing and validating input data from keyword arguments.
Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.
self is explicitly positional-only to allow self as a field name.
- _abc_impl = <_abc._abc_data object>
weaviate.outputs.tenants
- pydantic model weaviate.outputs.tenants.Tenant[source]
Bases:
BaseModel
Tenant class used to describe a tenant in Weaviate.
- name
The name of the tenant.
- activity_status
TenantActivityStatus, default: “HOT”
Create a new model by parsing and validating input data from keyword arguments.
Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.
self is explicitly positional-only to allow self as a field name.
- field activityStatus: _TenantActivistatusServerValues = _TenantActivistatusServerValues.HOT
- field activityStatusInternal: TenantActivityStatus = TenantActivityStatus.ACTIVE (alias 'activity_status')
- field name: str [Required]
- model_post_init(_Tenant__context)[source]
Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.
- Parameters:
_Tenant__context (Any)
- Return type:
None
- _abc_impl = <_abc._abc_data object>
- property activity_status: TenantActivityStatus
Getter for the activity status of the tenant.
- class weaviate.outputs.tenants.TenantActivityStatus(*values)[source]
Bases:
str
,Enum
TenantActivityStatus class used to describe the activity status of a tenant in Weaviate.
- ACTIVE
The tenant is fully active and can be used.
- INACTIVE
The tenant is not active, files stored locally.
- OFFLOADED
The tenant is not active, files stored on the cloud.
- OFFLOADING
The tenant is in the process of being offloaded.
- ONLOADING
The tenant is in the process of being activated.
- HOT
DEPRECATED, please use ACTIVE. The tenant is fully active and can be used.
- COLD
DEPRECATED, please use INACTIVE. The tenant is not active, files stored locally.
- FROZEN
DEPRECATED, please use OFFLOADED. The tenant is not active, files stored on the cloud.
- ACTIVE = 'ACTIVE'
- INACTIVE = 'INACTIVE'
- OFFLOADED = 'OFFLOADED'
- OFFLOADING = 'OFFLOADING'
- ONLOADING = 'ONLOADING'
- HOT = 'HOT'
- COLD = 'COLD'
- FROZEN = 'FROZEN'