weaviate.classes
- class weaviate.classes.ConsistencyLevel(*values)[source]
Bases:
str
,BaseEnum
The consistency levels when writing to Weaviate with replication enabled.
- ALL
Wait for confirmation of write success from all, N, replicas.
- ONE
Wait for confirmation of write success from only one replica.
- QUORUM
Wait for confirmation of write success from a quorum: N/2+1, of replicas.
- ALL = 'ALL'
- ONE = 'ONE'
- QUORUM = 'QUORUM'
weaviate.classes.aggregate
- pydantic model weaviate.classes.aggregate.GroupByAggregate[source]
Bases:
_WeaviateInput
Define how the aggregations’s group-by operation should be performed.
Create a new model by parsing and validating input data from keyword arguments.
Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.
self is explicitly positional-only to allow self as a field name.
- field limit: int | None = None
- field prop: str [Required]
- _abc_impl = <_abc._abc_data object>
- class weaviate.classes.aggregate.Metrics(property_)[source]
Bases:
object
Define the metrics to be returned based on a property when aggregating over a collection.
Use the __init__ method to define the name to the property to be aggregated on. Then use the text, integer, number, boolean, date_, or reference methods to define the metrics to be returned.
See the docs for more details!
- Parameters:
property_ (str)
- boolean(count=False, percentage_false=False, percentage_true=False, total_false=False, total_true=False)[source]
Define the metrics to be returned for a BOOL or BOOL_ARRAY property when aggregating over a collection.
If none of the arguments are provided then all metrics will be returned.
- Parameters:
count (bool) – Whether to include the number of objects that contain this property.
percentage_false (bool) – Whether to include the percentage of objects that have a false value for this property.
percentage_true (bool) – Whether to include the percentage of objects that have a true value for this property.
total_false (bool) – Whether to include the total number of objects that have a false value for this property.
total_true (bool) – Whether to include the total number of objects that have a true value for this property.
- Returns:
A _MetricsBoolean object that includes the metrics to be returned.
- Return type:
- date_(count=False, maximum=False, median=False, minimum=False, mode=False)[source]
Define the metrics to be returned for a DATE or DATE_ARRAY property when aggregating over a collection.
If none of the arguments are provided then all metrics will be returned.
- Parameters:
count (bool) – Whether to include the number of objects that contain this property.
maximum (bool) – Whether to include the maximum value of this property.
median (bool) – Whether to include the median value of this property.
minimum (bool) – Whether to include the minimum value of this property.
mode (bool) – Whether to include the mode value of this property.
- Returns:
A _MetricsDate object that includes the metrics to be returned.
- Return type:
- integer(count=False, maximum=False, mean=False, median=False, minimum=False, mode=False, sum_=False)[source]
Define the metrics to be returned for an INT or INT_ARRAY property when aggregating over a collection.
If none of the arguments are provided then all metrics will be returned.
- Parameters:
count (bool) – Whether to include the number of objects that contain this property.
maximum (bool) – Whether to include the maximum value of this property.
mean (bool) – Whether to include the mean value of this property.
median (bool) – Whether to include the median value of this property.
minimum (bool) – Whether to include the minimum value of this property.
mode (bool) – Whether to include the mode value of this property.
sum – Whether to include the sum of this property.
sum_ (bool)
- Returns:
A _MetricsInteger object that includes the metrics to be returned.
- Return type:
- number(count=False, maximum=False, mean=False, median=False, minimum=False, mode=False, sum_=False)[source]
Define the metrics to be returned for a NUMBER or NUMBER_ARRAY property when aggregating over a collection.
If none of the arguments are provided then all metrics will be returned.
- Parameters:
count (bool) – Whether to include the number of objects that contain this property.
maximum (bool) – Whether to include the maximum value of this property.
mean (bool) – Whether to include the mean value of this property.
median (bool) – Whether to include the median value of this property.
minimum (bool) – Whether to include the minimum value of this property.
mode (bool) – Whether to include the mode value of this property.
sum – Whether to include the sum of this property.
sum_ (bool)
- Returns:
A _MetricsNumber object that includes the metrics to be returned.
- Return type:
- reference(pointing_to=False)[source]
Define the metrics to be returned for a cross-reference property when aggregating over a collection.
If none of the arguments are provided then all metrics will be returned.
- Parameters:
pointing_to (bool) – The UUIDs of the objects that are being pointed to.
- Returns:
A _MetricsReference object that includes the metrics to be returned.
- Return type:
- text(count=False, top_occurrences_count=False, top_occurrences_value=False, min_occurrences=None)[source]
Define the metrics to be returned for a TEXT or TEXT_ARRAY property when aggregating over a collection.
If none of the arguments are provided then all metrics will be returned.
- Parameters:
count (bool) – Whether to include the number of objects that contain this property.
top_occurrences_count (bool) – Whether to include the number of the top occurrences of a property’s value.
top_occurrences_value (bool) – Whether to include the value of the top occurrences of a property’s value.
min_occurrences (int | None) – Only include entries with more occurrences than the given limit.
- Returns:
A _MetricsStr object that includes the metrics to be returned.
- Return type:
weaviate.classes.backup
- class weaviate.classes.backup.BackupCompressionLevel(*values)[source]
Bases:
str
,Enum
Which compression level should be used to compress the backup.
- DEFAULT = 'DefaultCompression'
- BEST_SPEED = 'BestSpeed'
- BEST_COMPRESSION = 'BestCompression'
- pydantic model weaviate.classes.backup.BackupConfigCreate[source]
Bases:
_BackupConfigBase
Options to configure the backup when creating a backup.
Create a new model by parsing and validating input data from keyword arguments.
Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.
self is explicitly positional-only to allow self as a field name.
- field CPUPercentage: int | None = None (alias 'cpu_percentage')
- field ChunkSize: int | None = None (alias 'chunk_size')
- field CompressionLevel: BackupCompressionLevel | None = None (alias 'compression_level')
- _abc_impl = <_abc._abc_data object>
- pydantic model weaviate.classes.backup.BackupConfigRestore[source]
Bases:
_BackupConfigBase
Options to configure the backup when restoring a backup.
Create a new model by parsing and validating input data from keyword arguments.
Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.
self is explicitly positional-only to allow self as a field name.
- field CPUPercentage: int | None = None (alias 'cpu_percentage')
- _abc_impl = <_abc._abc_data object>
- class weaviate.classes.backup.BackupStorage(*values)[source]
Bases:
str
,Enum
Which backend should be used to write the backup to.
- FILESYSTEM = 'filesystem'
- S3 = 's3'
- GCS = 'gcs'
- AZURE = 'azure'
- class weaviate.classes.backup.BackupLocation[source]
Bases:
object
The dynamic path of a backup.
- Azure
alias of
_BackupLocationAzure
- FileSystem
alias of
_BackupLocationFilesystem
- GCP
alias of
_BackupLocationGCP
- S3
alias of
_BackupLocationS3
weaviate.classes.batch
- pydantic model weaviate.classes.batch.Shard[source]
Bases:
BaseModel
Use this class when defining a shard whose vector indexing process will be awaited for in a sync blocking fashion.
Create a new model by parsing and validating input data from keyword arguments.
Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.
self is explicitly positional-only to allow self as a field name.
- field collection: str [Required]
- field tenant: str | None = None
- _abc_impl = <_abc._abc_data object>
weaviate.classes.config
- class weaviate.classes.config.Configure[source]
Bases:
object
Use this factory class to generate the correct object for use when using the collections.create() method. E.g., .multi_tenancy() will return a MultiTenancyConfigCreate object to be used in the multi_tenancy_config argument.
Each class method provides options specific to the named configuration type in the function’s name. Under-the-hood data validation steps will ensure that any mis-specifications are caught before the request is sent to Weaviate.
- Generative
alias of
_Generative
- NamedVectors
alias of
_NamedVectors
- VectorIndex
alias of
_VectorIndex
- Vectorizer
alias of
_Vectorizer
- static inverted_index(bm25_b=None, bm25_k1=None, cleanup_interval_seconds=None, index_timestamps=None, index_property_length=None, index_null_state=None, stopwords_preset=None, stopwords_additions=None, stopwords_removals=None)[source]
Create an InvertedIndexConfigCreate object to be used when defining the configuration of the keyword searching algorithm of Weaviate.
- Parameters:
<https (See `the docs) –
//weaviate.io/developers/weaviate/configuration/indexes#configure-the-inverted-index>`_ for details!
bm25_b (float | None)
bm25_k1 (float | None)
cleanup_interval_seconds (int | None)
index_timestamps (bool | None)
index_property_length (bool | None)
index_null_state (bool | None)
stopwords_preset (StopwordsPreset | None)
stopwords_additions (List[str] | None)
stopwords_removals (List[str] | None)
- Return type:
- static multi_tenancy(enabled=True, auto_tenant_creation=None, auto_tenant_activation=None)[source]
Create a MultiTenancyConfigCreate object to be used when defining the multi-tenancy configuration of Weaviate.
- Parameters:
enabled (bool) – Whether multi-tenancy is enabled. Defaults to True.
auto_tenant_creation (bool | None) – Automatically create nonexistent tenants during object creation. Defaults to None, which uses the server-defined default.
auto_tenant_activation (bool | None) – Automatically turn tenants implicitly HOT when they are accessed. Defaults to None, which uses the server-defined default.
- Return type:
- static replication(factor=None, async_enabled=None, deletion_strategy=None)[source]
Create a ReplicationConfigCreate object to be used when defining the replication configuration of Weaviate.
NOTE: async_enabled is only available with WeaviateDB >=v1.26.0
- Parameters:
factor (int | None) – The replication factor.
async_enabled (bool | None) – Enabled async replication.
deletion_strategy (ReplicationDeletionStrategy | None) – How conflicts between different nodes about deleted objects are resolved.
- Return type:
- static sharding(virtual_per_physical=None, desired_count=None, actual_count=None, desired_virtual_count=None, actual_virtual_count=None)[source]
Create a ShardingConfigCreate object to be used when defining the sharding configuration of Weaviate.
NOTE: You can only use one of Sharding or Replication, not both.
See the docs for more details.
- Parameters:
virtual_per_physical (int | None) – The number of virtual shards per physical shard.
desired_count (int | None) – The desired number of physical shards.
actual_count (int | None) – The actual number of physical shards. This is a read-only field so has no effect. It is kept for backwards compatibility but will be removed in a future release.
desired_virtual_count (int | None) – The desired number of virtual shards.
actual_virtual_count (int | None) – The actual number of virtual shards. This is a read-only field so has no effect. It is kept for backwards compatibility but will be removed in a future release.
- Return type:
- class weaviate.classes.config.ConsistencyLevel(*values)[source]
Bases:
str
,BaseEnum
The consistency levels when writing to Weaviate with replication enabled.
- ALL
Wait for confirmation of write success from all, N, replicas.
- ONE
Wait for confirmation of write success from only one replica.
- QUORUM
Wait for confirmation of write success from a quorum: N/2+1, of replicas.
- ALL = 'ALL'
- ONE = 'ONE'
- QUORUM = 'QUORUM'
- class weaviate.classes.config.Reconfigure[source]
Bases:
object
Use this factory class to generate the correct xxxConfig object for use when using the collection.update() method.
Each staticmethod provides options specific to the named configuration type in the function’s name. Under-the-hood data validation steps will ensure that any mis-specifications are caught before the request is sent to Weaviate. Only those configurations that are mutable are available in this class. If you wish to update the configuration of an immutable aspect of your collection then you will have to delete the collection and re-create it with the new configuration.
- Generative
alias of
_Generative
- NamedVectors
alias of
_NamedVectorsUpdate
- VectorIndex
alias of
_VectorIndexUpdate
- static inverted_index(bm25_b=None, bm25_k1=None, cleanup_interval_seconds=None, stopwords_additions=None, stopwords_preset=None, stopwords_removals=None)[source]
Create an InvertedIndexConfigUpdate object.
Use this method when defining the inverted_index_config argument in collection.update().
- Parameters:
<https (See `the docs) –
//weaviate.io/developers/weaviate/configuration/indexes#configure-the-inverted-index>`_ for a more detailed view!
bm25_b (float | None)
bm25_k1 (float | None)
cleanup_interval_seconds (int | None)
stopwords_additions (List[str] | None)
stopwords_preset (StopwordsPreset | None)
stopwords_removals (List[str] | None)
- Return type:
- static multi_tenancy(auto_tenant_creation=None, auto_tenant_activation=None)[source]
Create a MultiTenancyConfigUpdate object.
Use this method when defining the multi_tenancy argument in collection.update().
- Parameters:
auto_tenant_creation (bool | None) – When set, implicitly creates nonexistent tenants during object creation
auto_tenant_activation (bool | None) – Automatically turn tenants implicitly HOT when they are accessed. Defaults to None, which uses the server-defined default.
- Return type:
- static replication(factor=None, async_enabled=None, deletion_strategy=None)[source]
Create a ReplicationConfigUpdate object.
Use this method when defining the replication_config argument in collection.update().
- Parameters:
factor (int | None) – The replication factor.
async_enabled (bool | None) – Enable async replication.
deletion_strategy (ReplicationDeletionStrategy | None) – How conflicts between different nodes about deleted objects are resolved.
- Return type:
- class weaviate.classes.config.DataType(*values)[source]
Bases:
str
,BaseEnum
The available primitive data types in Weaviate.
- TEXT
Text data type.
- TEXT_ARRAY
Text array data type.
- INT
Integer data type.
- INT_ARRAY
Integer array data type.
- BOOL
Boolean data type.
- BOOL_ARRAY
Boolean array data type.
- NUMBER
Number data type.
- NUMBER_ARRAY
Number array data type.
- DATE
Date data type.
- DATE_ARRAY
Date array data type.
- UUID
UUID data type.
- UUID_ARRAY
UUID array data type.
- GEO_COORDINATES
Geo coordinates data type.
- BLOB
Blob data type.
- PHONE_NUMBER
Phone number data type.
- OBJECT
Object data type.
- OBJECT_ARRAY
Object array data type.
- TEXT = 'text'
- TEXT_ARRAY = 'text[]'
- INT = 'int'
- INT_ARRAY = 'int[]'
- BOOL = 'boolean'
- BOOL_ARRAY = 'boolean[]'
- NUMBER = 'number'
- NUMBER_ARRAY = 'number[]'
- DATE = 'date'
- DATE_ARRAY = 'date[]'
- UUID = 'uuid'
- UUID_ARRAY = 'uuid[]'
- GEO_COORDINATES = 'geoCoordinates'
- BLOB = 'blob'
- PHONE_NUMBER = 'phoneNumber'
- OBJECT = 'object'
- OBJECT_ARRAY = 'object[]'
- class weaviate.classes.config.GenerativeSearches(*values)[source]
Bases:
str
,BaseEnum
The available generative search modules in Weaviate.
These modules generate text from text-based inputs. See the docs for more details.
- AWS
Weaviate module backed by AWS Bedrock generative models.
- ANTHROPIC
Weaviate module backed by Anthropic generative models.
- ANYSCALE
Weaviate module backed by Anyscale generative models.
- COHERE
Weaviate module backed by Cohere generative models.
- DATABRICKS
Weaviate module backed by Databricks generative models.
- FRIENDLIAI
Weaviate module backed by FriendliAI generative models.
- MISTRAL
Weaviate module backed by Mistral generative models.
- NVIDIA
Weaviate module backed by NVIDIA generative models.
- OLLAMA
Weaviate module backed by generative models deployed on Ollama infrastructure.
- OPENAI
Weaviate module backed by OpenAI and Azure-OpenAI generative models.
- PALM
Weaviate module backed by PaLM generative models.
- AWS = 'generative-aws'
- ANTHROPIC = 'generative-anthropic'
- ANYSCALE = 'generative-anyscale'
- COHERE = 'generative-cohere'
- DATABRICKS = 'generative-databricks'
- DUMMY = 'generative-dummy'
- FRIENDLIAI = 'generative-friendliai'
- MISTRAL = 'generative-mistral'
- NVIDIA = 'generative-nvidia'
- OLLAMA = 'generative-ollama'
- OPENAI = 'generative-openai'
- PALM = 'generative-palm'
- XAI = 'generative-xai'
- class weaviate.classes.config.Integrations[source]
Bases:
object
- static cohere(*, api_key, base_url=None, requests_per_minute_embeddings=None)[source]
- Parameters:
api_key (str)
base_url (str | None)
requests_per_minute_embeddings (int | None)
- Return type:
_IntegrationConfig
- static huggingface(*, api_key, requests_per_minute_embeddings=None, base_url=None)[source]
- Parameters:
api_key (str)
requests_per_minute_embeddings (int | None)
base_url (str | None)
- Return type:
_IntegrationConfig
- static jinaai(*, api_key, requests_per_minute_embeddings=None, base_url=None)[source]
- Parameters:
api_key (str)
requests_per_minute_embeddings (int | None)
base_url (str | None)
- Return type:
_IntegrationConfig
- static mistral(*, api_key, request_per_minute_embeddings=None, tokens_per_minute_embeddings=None)[source]
- Parameters:
api_key (str)
request_per_minute_embeddings (int | None)
tokens_per_minute_embeddings (int | None)
- Return type:
_IntegrationConfig
- static openai(*, api_key, requests_per_minute_embeddings=None, tokens_per_minute_embeddings=None, organization=None, base_url=None)[source]
- Parameters:
api_key (str)
requests_per_minute_embeddings (int | None)
tokens_per_minute_embeddings (int | None)
organization (str | None)
base_url (str | None)
- Return type:
_IntegrationConfig
- pydantic model weaviate.classes.config.Multi2VecField[source]
Bases:
BaseModel
Use this class when defining the fields to use in the Multi2VecClip and Multi2VecBind vectorizers.
Create a new model by parsing and validating input data from keyword arguments.
Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.
self is explicitly positional-only to allow self as a field name.
- field name: str [Required]
- field weight: float | None = None
- _abc_impl = <_abc._abc_data object>
- class weaviate.classes.config.MultiVectorAggregation(*values)[source]
Bases:
str
,BaseEnum
Aggregation type to use for multivector indices.
- MAX_SIM
Maximum similarity.
- MAX_SIM = 'maxSim'
- class weaviate.classes.config.ReplicationDeletionStrategy(*values)[source]
Bases:
str
,BaseEnum
How object deletions in multi node environments should be resolved.
- PERMANENT_DELETION
Once an object has been deleted on one node it will be deleted on all nodes in case of conflicts.
- NO_AUTOMATED_RESOLUTION
No deletion resolution.
- DELETE_ON_CONFLICT = 'DeleteOnConflict'
- NO_AUTOMATED_RESOLUTION = 'NoAutomatedResolution'
- TIME_BASED_RESOLUTION = 'TimeBasedResolution'
- pydantic model weaviate.classes.config.Property[source]
Bases:
_ConfigCreateModel
This class defines the structure of a data property that a collection can have within Weaviate.
- name
The name of the property, REQUIRED.
- data_type
The data type of the property, REQUIRED.
- description
A description of the property.
- index_filterable
Whether the property should be filterable in the inverted index.
- index_range_filters
Whether the property should support range filters in the inverted index.
- index_searchable
Whether the property should be searchable in the inverted index.
- nested_properties
nested properties for data type OBJECT and OBJECT_ARRAY`.
- skip_vectorization
Whether to skip vectorization of the property. Defaults to False.
- tokenization
The tokenization method to use for the inverted index. Defaults to None.
- vectorize_property_name
Whether to vectorize the property name. Defaults to True.
Create a new model by parsing and validating input data from keyword arguments.
Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.
self is explicitly positional-only to allow self as a field name.
- field description: str | None = None
- field indexFilterable: bool | None = None (alias 'index_filterable')
- field indexRangeFilters: bool | None = None (alias 'index_range_filters')
- field indexSearchable: bool | None = None (alias 'index_searchable')
- field name: str [Required]
- Validated by:
_check_name
- field skip_vectorization: bool = False
- field tokenization: Tokenization | None = None
- field vectorize_property_name: bool = True
- _to_dict(vectorizers=None)[source]
- Parameters:
vectorizers (Sequence[Vectorizers | _EnumLikeStr] | None)
- Return type:
Dict[str, Any]
- _abc_impl = <_abc._abc_data object>
- class weaviate.classes.config.PQEncoderDistribution(*values)[source]
Bases:
str
,BaseEnum
Distribution of the PQ encoder.
- LOG_NORMAL
Log-normal distribution.
- NORMAL
Normal distribution.
- LOG_NORMAL = 'log-normal'
- NORMAL = 'normal'
- class weaviate.classes.config.PQEncoderType(*values)[source]
Bases:
str
,BaseEnum
Type of the PQ encoder.
- KMEANS
K-means encoder.
- TILE
Tile encoder.
- KMEANS = 'kmeans'
- TILE = 'tile'
- pydantic model weaviate.classes.config.ReferenceProperty[source]
Bases:
_ReferencePropertyBase
This class defines properties that are cross references to a single target collection.
Use this class when you want to create a cross-reference in the collection’s config that is capable of having only cross-references to a single other collection.
- name
The name of the property, REQUIRED.
- target_collection
The name of the target collection, REQUIRED.
- description
A description of the property.
Create a new model by parsing and validating input data from keyword arguments.
Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.
self is explicitly positional-only to allow self as a field name.
- field description: str | None = None
- field target_collection: str [Required]
- MultiTarget
alias of
_ReferencePropertyMultiTarget
- _abc_impl = <_abc._abc_data object>
- class weaviate.classes.config.Rerankers(*values)[source]
Bases:
str
,BaseEnum
The available reranker modules in Weaviate.
These modules rerank the results of a search query. See the docs for more details.
- NONE
No reranker.
- COHERE
Weaviate module backed by Cohere reranking models.
- TRANSFORMERS
Weaviate module backed by Transformers reranking models.
- VOYAGEAI
Weaviate module backed by VoyageAI reranking models.
- JINAAI
Weaviate module backed by JinaAI reranking models.
- NVIDIA
Weaviate module backed by NVIDIA reranking models.
- NONE = 'none'
- COHERE = 'reranker-cohere'
- TRANSFORMERS = 'reranker-transformers'
- VOYAGEAI = 'reranker-voyageai'
- JINAAI = 'reranker-jinaai'
- NVIDIA = 'reranker-nvidia'
- class weaviate.classes.config.StopwordsPreset(*values)[source]
Bases:
str
,BaseEnum
Preset stopwords to use in the Stopwords class.
- EN
English stopwords.
- NONE
No stopwords.
- NONE = 'none'
- EN = 'en'
- class weaviate.classes.config.Tokenization(*values)[source]
Bases:
str
,BaseEnum
The available inverted index tokenization methods for text properties in Weaviate.
- WORD
Tokenize by word.
- WHITESPACE
Tokenize by whitespace.
- LOWERCASE
Tokenize by lowercase.
- FIELD
Tokenize by field.
- GSE
Tokenize using GSE (for Chinese and Japanese).
- TRIGRAM
Tokenize into trigrams.
- KAGOME_JA
Tokenize using the ‘Kagome’ tokenizer (for Japanese).
- KAGOME_KR
Tokenize using the ‘Kagome’ tokenizer and a Korean MeCab dictionary (for Korean).
- WORD = 'word'
- WHITESPACE = 'whitespace'
- LOWERCASE = 'lowercase'
- FIELD = 'field'
- GSE = 'gse'
- TRIGRAM = 'trigram'
- KAGOME_JA = 'kagome_ja'
- KAGOME_KR = 'kagome_kr'
- class weaviate.classes.config.Vectorizers(*values)[source]
Bases:
str
,Enum
The available vectorization modules in Weaviate.
These modules encode binary data into lists of floats called vectors. See the docs for more details.
- NONE
No vectorizer.
- TEXT2VEC_AWS
Weaviate module backed by AWS text-based embedding models.
- TEXT2VEC_COHERE
Weaviate module backed by Cohere text-based embedding models.
- TEXT2VEC_CONTEXTIONARY
Weaviate module backed by Contextionary text-based embedding models.
- TEXT2VEC_GPT4ALL
Weaviate module backed by GPT-4-All text-based embedding models.
- TEXT2VEC_HUGGINGFACE
Weaviate module backed by HuggingFace text-based embedding models.
- TEXT2VEC_OPENAI
Weaviate module backed by OpenAI and Azure-OpenAI text-based embedding models.
- TEXT2VEC_PALM
Weaviate module backed by PaLM text-based embedding models.
- TEXT2VEC_TRANSFORMERS
Weaviate module backed by Transformers text-based embedding models.
- TEXT2VEC_JINAAI
Weaviate module backed by Jina AI text-based embedding models.
- TEXT2VEC_VOYAGEAI
Weaviate module backed by Voyage AI text-based embedding models.
- TEXT2VEC_NVIDIA
Weaviate module backed by NVIDIA text-based embedding models.
- TEXT2VEC_WEAVIATE
Weaviate module backed by Weaviate’s self-hosted text-based embedding models.
- IMG2VEC_NEURAL
Weaviate module backed by a ResNet-50 neural network for images.
- MULTI2VEC_CLIP
Weaviate module backed by a Sentence-BERT CLIP model for images and text.
- MULTI2VEC_PALM
Weaviate module backed by a palm model for images and text.
- MULTI2VEC_BIND
Weaviate module backed by the ImageBind model for images, text, audio, depth, IMU, thermal, and video.
- MULTI2VEC_VOYAGEAI
Weaviate module backed by a Voyage AI multimodal embedding models.
- MULTI2VEC_NVIDIA
Weaviate module backed by NVIDIA multimodal embedding models.
- REF2VEC_CENTROID
Weaviate module backed by a centroid-based model that calculates an object’s vectors from its referenced vectors.
- NONE = 'none'
- TEXT2COLBERT_JINAAI = 'text2colbert-jinaai'
- TEXT2VEC_AWS = 'text2vec-aws'
- TEXT2VEC_COHERE = 'text2vec-cohere'
- TEXT2VEC_CONTEXTIONARY = 'text2vec-contextionary'
- TEXT2VEC_DATABRICKS = 'text2vec-databricks'
- TEXT2VEC_GPT4ALL = 'text2vec-gpt4all'
- TEXT2VEC_HUGGINGFACE = 'text2vec-huggingface'
- TEXT2VEC_MISTRAL = 'text2vec-mistral'
- TEXT2VEC_NVIDIA = 'text2vec-nvidia'
- TEXT2VEC_OLLAMA = 'text2vec-ollama'
- TEXT2VEC_OPENAI = 'text2vec-openai'
- TEXT2VEC_PALM = 'text2vec-palm'
- TEXT2VEC_TRANSFORMERS = 'text2vec-transformers'
- TEXT2VEC_JINAAI = 'text2vec-jinaai'
- TEXT2VEC_VOYAGEAI = 'text2vec-voyageai'
- TEXT2VEC_WEAVIATE = 'text2vec-weaviate'
- IMG2VEC_NEURAL = 'img2vec-neural'
- MULTI2VEC_CLIP = 'multi2vec-clip'
- MULTI2VEC_COHERE = 'multi2vec-cohere'
- MULTI2VEC_JINAAI = 'multi2vec-jinaai'
- MULTI2VEC_BIND = 'multi2vec-bind'
- MULTI2VEC_PALM = 'multi2vec-palm'
- MULTI2VEC_VOYAGEAI = 'multi2vec-voyageai'
- MULTI2VEC_NVIDIA = 'multi2vec-nvidia'
- REF2VEC_CENTROID = 'ref2vec-centroid'
- class weaviate.classes.config.VectorDistances(*values)[source]
Bases:
str
,Enum
Vector similarity distance metric to be used in the VectorIndexConfig class.
To ensure optimal search results, we recommend reviewing whether your model provider advises a specific distance metric and following their advice.
- COSINE = 'cosine'
- DOT = 'dot'
- L2_SQUARED = 'l2-squared'
- HAMMING = 'hamming'
- MANHATTAN = 'manhattan'
weaviate.classes.data
- class weaviate.classes.data.DataObject(properties=None, uuid=None, vector=None, references=None)[source]
Bases:
Generic
[P
,R
]This class represents an entire object within a collection to be used when batching.
- Parameters:
properties (P)
uuid (str | UUID | None)
vector (Mapping[str, Sequence[int | float] | Sequence[Sequence[int | float]]] | Sequence[int | float] | None)
references (R)
- properties: P = None
- references: R = None
- uuid: str | UUID | None = None
- vector: Mapping[str, Sequence[int | float] | Sequence[Sequence[int | float]]] | Sequence[int | float] | None = None
- class weaviate.classes.data.DataReference(from_property, from_uuid, to_uuid)[source]
Bases:
_DataReference
This class represents a reference between objects within a collection to be used when batching.
- Parameters:
from_property (str)
from_uuid (str | UUID)
to_uuid (str | UUID | List[str | UUID])
- MultiTarget
alias of
DataReferenceMulti
- pydantic model weaviate.classes.data.GeoCoordinate[source]
Bases:
_WeaviateInput
Input for the geo-coordinate datatype.
Create a new model by parsing and validating input data from keyword arguments.
Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.
self is explicitly positional-only to allow self as a field name.
- field latitude: float [Required]
- Constraints:
ge = -90
le = 90
- field longitude: float [Required]
- Constraints:
ge = -180
le = 180
- _abc_impl = <_abc._abc_data object>
- pydantic model weaviate.classes.data.PhoneNumber[source]
Bases:
_PhoneNumberBase
Input for the phone number datatype.
default_country should correspond to the ISO 3166-1 alpha-2 country code. This is used to figure out the correct countryCode and international format if only a national number (e.g. 0123 4567) is provided.
Create a new model by parsing and validating input data from keyword arguments.
Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.
self is explicitly positional-only to allow self as a field name.
- field default_country: str | None = None
- _abc_impl = <_abc._abc_data object>
weaviate.classes.debug
- pydantic model weaviate.classes.debug.DebugRESTObject[source]
Bases:
BaseModel
Create a new model by parsing and validating input data from keyword arguments.
Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.
self is explicitly positional-only to allow self as a field name.
- field collection: str [Required] (alias 'class')
- field creation_time: datetime [Required] (alias 'creationTimeUnix')
- field last_update_time: datetime [Required] (alias 'lastUpdateTimeUnix')
- field properties: Dict[str, Any] [Required]
- field tenant: str | None = None
- field uuid: UUID [Required] (alias 'id')
- field vector: list[float] | None = None
- field vectors: Dict[str, list[float]] | None = None
- _abc_impl = <_abc._abc_data object>
weaviate.classes.generics
- class weaviate.classes.generics.CrossReferenceAnnotation(include_vector=False, metadata=None, target_collection=None)[source]
Bases:
object
Dataclass to be used when annotating a generic cross reference property with options for retrieving data from the cross referenced object when querying.
Example
>>> import typing >>> import weaviate.classes as wvc >>> >>> class One(typing.TypedDict): ... prop: str >>> >>> class Two(typing.TypedDict): ... one: typing.Annotated[ ... wvc.CrossReference[One], ... wvc.CrossReferenceAnnotation(include_vector=True) ... ]
- Parameters:
include_vector (bool)
metadata (MetadataQuery | None)
target_collection (str | None)
- include_vector: bool = False
- metadata: MetadataQuery | None = None
- target_collection: str | None = None
weaviate.classes.init
- class weaviate.classes.init.Auth[source]
Bases:
object
- static bearer_token(access_token, expires_in=60, refresh_token=None)[source]
- Parameters:
access_token (str)
expires_in (int)
refresh_token (str | None)
- Return type:
- static client_credentials(client_secret, scope=None)[source]
- Parameters:
client_secret (str)
scope (str | List[str] | None)
- Return type:
- pydantic model weaviate.classes.init.AdditionalConfig[source]
Bases:
BaseModel
Use this class to specify the connection and proxy settings for your client when connecting to Weaviate.
When specifying the timeout, you can either provide a tuple with the query and insert timeouts, or a Timeout object. The Timeout object gives you additional option to configure the init timeout, which controls how long the client initialisation checks will wait for before throwing. This is useful when you have a slow network connection.
When specifying the proxies, be aware that supplying a URL (str) will populate all of the http, https, and grpc proxies. In order for this to be possible, you must have a proxy that is capable of handling simultaneous HTTP/1.1 and HTTP/2 traffic.
Create a new model by parsing and validating input data from keyword arguments.
Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.
self is explicitly positional-only to allow self as a field name.
- field connection: ConnectionConfig [Optional]
- field trust_env: bool = False
- _abc_impl = <_abc._abc_data object>
- pydantic model weaviate.classes.init.Proxies[source]
Bases:
BaseModel
Proxy configurations for sending requests to Weaviate through a proxy.
Create a new model by parsing and validating input data from keyword arguments.
Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.
self is explicitly positional-only to allow self as a field name.
- field grpc: str | None = None
- field http: str | None = None
- field https: str | None = None
- _abc_impl = <_abc._abc_data object>
- pydantic model weaviate.classes.init.Timeout[source]
Bases:
BaseModel
Timeouts for the different operations in the client.
Create a new model by parsing and validating input data from keyword arguments.
Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.
self is explicitly positional-only to allow self as a field name.
- field init: int | float = 2
- Constraints:
ge = 0
- field insert: int | float = 90
- Constraints:
ge = 0
- field query: int | float = 30
- Constraints:
ge = 0
- _abc_impl = <_abc._abc_data object>
weaviate.classes.query
- class weaviate.classes.query.Filter[source]
Bases:
object
This class is used to define filters to be used when querying and deleting from a collection.
It forms the root of a method chaining hierarchy that allows you to iteratively define filters that can hop between objects through references in a formulaic way.
See the docs for more information.
- static by_creation_time()[source]
Define a filter based on the creation time to be used when querying and deleting from a collection.
- Return type:
- static by_id()[source]
Define a filter based on the uuid to be used when querying and deleting from a collection.
- Return type:
- static by_property(name, length=False)[source]
Define a filter based on a property to be used when querying and deleting from a collection.
- Parameters:
name (str)
length (bool)
- Return type:
- static by_ref(link_on)[source]
Define a filter based on a reference to be used when querying and deleting from a collection.
- Parameters:
link_on (str)
- Return type:
- static by_ref_count(link_on)[source]
Define a filter based on the number of references to be used when querying and deleting from a collection.
- Parameters:
link_on (str)
- Return type:
- static by_ref_multi_target(link_on, target_collection)[source]
Define a filter based on a reference to be used when querying and deleting from a collection.
- Parameters:
link_on (str)
target_collection (str)
- Return type:
- pydantic model weaviate.classes.query.GeoCoordinate[source]
Bases:
_WeaviateInput
Input for the geo-coordinate datatype.
Create a new model by parsing and validating input data from keyword arguments.
Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.
self is explicitly positional-only to allow self as a field name.
- field latitude: float [Required]
- Constraints:
ge = -90
le = 90
- field longitude: float [Required]
- Constraints:
ge = -180
le = 180
- _abc_impl = <_abc._abc_data object>
- class weaviate.classes.query.GenerativeConfig[source]
Bases:
object
Use this factory class to create the correct object for the generative_provider argument in the search methods of the .generate namespace.
Each staticmethod provides options specific to the named generative search module in the function’s name. Under-the-hood data validation steps will ensure that any mis-specifications will be caught before the request is sent to Weaviate.
- static anthropic(*, base_url=None, model=None, max_tokens=None, stop_sequences=None, temperature=None, top_k=None, top_p=None)[source]
Create a _GenerativeAnthropic object for use when performing dynamic AI generation using the generative-anthropic module.
- Parameters:
base_url (str | None) – The base URL to send the API request to. Defaults to None, which uses the server-defined default
model (str | None) – The model to use. Defaults to None, which uses the server-defined default
max_tokens (int | None) – The maximum number of tokens to generate. Defaults to None, which uses the server-defined default
stop_sequences (List[str] | None) – The stop sequences to use. Defaults to None, which uses the server-defined default
temperature (float | None) – The temperature to use. Defaults to None, which uses the server-defined default
top_k (int | None) – The top K to use. Defaults to None, which uses the server-defined default
top_p (float | None) – The top P to use. Defaults to None, which uses the server-defined default
- Return type:
_GenerativeConfigRuntime
- static anyscale(*, base_url=None, model=None, temperature=None)[source]
Create a _GenerativeAnyscale object for use when performing dynamic AI generation using the generative-anyscale module.
- Parameters:
base_url (str | None) – The base URL to send the API request to. Defaults to None, which uses the server-defined default
model (str | None) – The model to use. Defaults to None, which uses the server-defined default
temperature (float | None) – The temperature to use. Defaults to None, which uses the server-defined default
- Return type:
_GenerativeConfigRuntime
- static aws(*, endpoint=None, model=None, region=None, service=None, target_model=None, target_variant=None, temperature=None)[source]
Create a _GenerativeAWS object for use when performing dynamic AI generation using the generative-aws module.
See the documentation for detailed usage.
- Parameters:
endpoint (str | None) – The endpoint to use when requesting the generation. Defaults to None, which uses the server-defined default
model (str | None) – The model to use. Defaults to None, which uses the server-defined default
region (str | None) – The AWS region to run the model from. Defaults to None, which uses the server-defined default
service (Literal['bedrock', 'sagemaker'] | str | None) – The AWS service to use. Defaults to None, which uses the server-defined default
target_model (str | None) – The target model to use. Defaults to None, which uses the server-defined default
target_variant (str | None) – The target variant to use. Defaults to None, which uses the server-defined default
temperature (float | None) – The temperature to use. Defaults to None, which uses the server-defined default
- Return type:
_GenerativeConfigRuntime
- static azure_openai(*, api_version=None, base_url=None, deployment_id=None, frequency_penalty=None, max_tokens=None, model=None, presence_penalty=None, resource_name=None, stop=None, temperature=None, top_p=None)[source]
Create a _GenerativeOpenAI object for use when performing AI generation using the Azure-backed generative-openai module.
See the documentation for detailed usage.
- Parameters:
api_version (str | None) – The API version to use. Defaults to None, which uses the server-defined default
base_url (str | None) – The base URL where the API request should go. Defaults to None, which uses the server-defined default
deployment_id (str | None) – The deployment ID to use. Defaults to None, which uses the server-defined default
frequency_penalty (float | None) – The frequency penalty to use. Defaults to None, which uses the server-defined default
max_tokens (int | None) – The maximum number of tokens to generate. Defaults to None, which uses the server-defined default
model (str | None) – The model to use. Defaults to None, which uses the server-defined default
presence_penalty (float | None) – The presence penalty to use. Defaults to None, which uses the server-defined default
resource_name (str | None) – The name of the OpenAI resource to use. Defaults to None, which uses the server-defined default
stop (List[str] | None) – The stop sequences to use. Defaults to None, which uses the server-defined default
temperature (float | None) – The temperature to use. Defaults to None, which uses the server-defined default
top_p (float | None) – The top P to use. Defaults to None, which uses the server-defined default
- Return type:
_GenerativeConfigRuntime
- static cohere(*, base_url=None, k=None, max_tokens=None, model=None, p=None, presence_penalty=None, stop_sequences=None, temperature=None)[source]
Create a _GenerativeCohere object for use when performing AI generation using the generative-cohere module.
See the documentation for detailed usage.
- Parameters:
base_url (str | None) – The base URL where the API request should go. Defaults to None, which uses the server-defined default
k (int | None) – The top K property to use. Defaults to None, which uses the server-defined default
max_tokens (int | None) – The maximum number of tokens to generate. Defaults to None, which uses the server-defined default
model (str | None) – The model to use. Defaults to None, which uses the server-defined default
p (float | None) – The top P property to use. Defaults to None, which uses the server-defined default
presence_penalty (float | None) – The presence penalty to use. Defaults to None, which uses the server-defined default
stop_sequences (List[str] | None) – The stop sequences to use. Defaults to None, which uses the server-defined default
temperature (float | None) – The temperature to use. Defaults to None, which uses the server-defined default
- Return type:
_GenerativeConfigRuntime
- static databricks(*, endpoint, frequency_penalty=None, log_probs=None, max_tokens=None, model=None, n=None, presence_penalty=None, stop=None, temperature=None, top_log_probs=None, top_p=None)[source]
Create a _GenerativeDatabricks object for use when performing AI generation using the generative-databricks module.
- Parameters:
endpoint (str) – The URL where the API request should go. Defaults to None, which uses the server-defined default
frequency_penalty (float | None) – The frequency penalty to use. Defaults to None, which uses the server-defined default
log_probs (bool | None) – Whether to log probabilities. Defaults to None, which uses the server-defined default
max_tokens (int | None) – The maximum number of tokens to generate. Defaults to None, which uses the server-defined default
model (str | None) – The model to use. Defaults to None, which uses the server-defined default
n (int | None) – The number of sequences to generate. Defaults to None, which uses the server-defined default
presence_penalty (float | None) – The presence penalty to use. Defaults to None, which uses the server-defined default
stop (List[str] | None) – The stop sequences to use. Defaults to None, which uses the server-defined default
temperature (float | None) – The temperature to use. Defaults to None, which uses the server-defined default
top_log_probs (int | None) – The top log probabilities to use. Defaults to None, which uses the server-defined default
top_p (float | None) – The top P value to use. Defaults to None, which uses the server-defined default
- Return type:
_GenerativeConfigRuntime
- static dummy()[source]
Create a _GenerativeDummy object for use when performing AI generation using the generative-dummy module.
- Return type:
_GenerativeConfigRuntime
- static friendliai(*, base_url=None, max_tokens=None, model=None, n=None, temperature=None, top_p=None)[source]
Create a _GenerativeFriendliai object for use when performing AI generation using the generative-friendliai module.
- Parameters:
base_url (str | None) – The base URL where the API request should go. Defaults to None, which uses the server-defined default
max_tokens (int | None) – The maximum number of tokens to generate. Defaults to None, which uses the server-defined default
model (str | None) – The model to use. Defaults to None, which uses the server-defined default
n (int | None) – The number of sequences to generate. Defaults to None, which uses the server-defined default
temperature (float | None) – The temperature to use. Defaults to None, which uses the server-defined default
top_p (float | None) – The top P value to use. Defaults to None, which uses the server-defined default
- Return type:
_GenerativeConfigRuntime
- static google(*, api_endpoint=None, endpoint_id=None, frequency_penalty=None, max_tokens=None, model=None, presence_penalty=None, project_id=None, region=None, stop_sequences=None, temperature=None, top_k=None, top_p=None)[source]
Create a _GenerativeGoogle object for use when performing AI generation using the generative-google module.
See the documentation for detailed usage.
- Parameters:
api_endpoint (str | None) – The API endpoint to use. Defaults to None, which uses the server-defined default
endpoint_id (str | None) – The endpoint ID to use. Defaults to None, which uses the server-defined default
frequency_penalty (float | None) – The frequency penalty to use. Defaults to None, which uses the server-defined default
max_tokens (int | None) – The maximum number of tokens to generate. Defaults to None, which uses the server-defined default
model (str | None) – The model ID to use. Defaults to None, which uses the server-defined default
presence_penalty (float | None) – The presence penalty to use. Defaults to None, which uses the server-defined default
project_id (str | None) – The project ID to use. Defaults to None, which uses the server-defined default
region (str | None) – The region to use. Defaults to None, which uses the server-defined default
stop_sequences (List[str] | None) – The stop sequences to use. Defaults to None, which uses the server-defined default
temperature (float | None) – The temperature to use. Defaults to None, which uses the server-defined default
top_k (int | None) – The top K to use. Defaults to None, which uses the server-defined default
top_p (float | None) – The top P to use. Defaults to None, which uses the server-defined default
- Return type:
_GenerativeConfigRuntime
- static mistral(*, base_url=None, max_tokens=None, model=None, temperature=None, top_p=None)[source]
Create a _GenerativeMistral object for use when performing AI generation using the generative-mistral module.
- Parameters:
base_url (str | None) – The base URL where the API request should go. Defaults to None, which uses the server-defined default
max_tokens (int | None) – The maximum number of tokens to generate. Defaults to None, which uses the server-defined default
model (str | None) – The model to use. Defaults to None, which uses the server-defined default
temperature (float | None) – The temperature to use. Defaults to None, which uses the server-defined default
top_p (float | None) – The top P value to use. Defaults to None, which uses the server-defined default
- Return type:
_GenerativeConfigRuntime
- static nvidia(*, base_url=None, max_tokens=None, model=None, temperature=None, top_p=None)[source]
Create a _GenerativeNvidia object for use when performing AI generation using the generative-nvidia module.
- Parameters:
base_url (str | None) – The base URL where the API request should go. Defaults to None, which uses the server-defined default
max_tokens (int | None) – The maximum number of tokens to generate. Defaults to None, which uses the server-defined default
model (str | None) – The model to use. Defaults to None, which uses the server-defined default
temperature (float | None) – The temperature to use. Defaults to None, which uses the server-defined default
top_p (float | None) – The top P value to use. Defaults to None, which uses the server-defined default
- Return type:
_GenerativeConfigRuntime
- static ollama(*, api_endpoint=None, model=None, temperature=None)[source]
Create a _GenerativeOllama object for use when performing AI generation using the generative-ollama module.
- Parameters:
api_endpoint (str | None) – The API endpoint to use. Defaults to None, which uses the server-defined default Docker users may need to specify an alias, such as http://host.docker.internal:11434 so that the container can access the host machine.
model (str | None) – The model to use. Defaults to None, which uses the server-defined default
temperature (float | None) – The temperature to use. Defaults to None, which uses the server-defined default
images – Any query-specific external images to use in the generation. Passing a string will assume a path to the image file and, if not found, will be treated as a base64-encoded string. The number of images passed to the prompt will match the length of this field.
grouped_task_image_properties – Any internal image properties to use in the generation sourced from the object’s properties returned by the retrieval step. The number of images passed to the prompt will match the value of limit in the search query.
- Return type:
_GenerativeConfigRuntime
- static openai(*, api_version=None, base_url=None, deployment_id=None, frequency_penalty=None, max_tokens=None, model=None, presence_penalty=None, resource_name=None, stop=None, temperature=None, top_p=None)[source]
Create a _GenerativeOpenAI object for use when performing AI generation using the OpenAI-backed generative-openai module.
See the documentation for detailed usage.
- Parameters:
api_version (str | None) – The API version to use. Defaults to None, which uses the server-defined default
base_url (str | None) – The base URL where the API request should go. Defaults to None, which uses the server-defined default
deployment_id (str | None) – The deployment ID to use. Defaults to None, which uses the server-defined default
frequency_penalty (float | None) – The frequency penalty to use. Defaults to None, which uses the server-defined default
max_tokens (int | None) – The maximum number of tokens to generate. Defaults to None, which uses the server-defined default
model (str | None) – The model to use. Defaults to None, which uses the server-defined default
presence_penalty (float | None) – The presence penalty to use. Defaults to None, which uses the server-defined default
resource_name (str | None) – The name of the OpenAI resource to use. Defaults to None, which uses the server-defined default
stop (List[str] | None) – The stop sequences to use. Defaults to None, which uses the server-defined default
temperature (float | None) – The temperature to use. Defaults to None, which uses the server-defined default
top_p (float | None) – The top P to use. Defaults to None, which uses the server-defined default
- Return type:
_GenerativeConfigRuntime
- static xai(*, base_url=None, max_tokens=None, model=None, temperature=None, top_p=None)[source]
Create a _GenerativeXAI object for use when performing AI generation using the generative-xai module.
See the documentation for detailed usage.
- Parameters:
base_url (str | None) – The base URL where the API request should go. Defaults to None, which uses the server-defined default
max_tokens (int | None) – The maximum number of tokens to generate. Defaults to None, which uses the server-defined default
model (str | None) – The model to use. Defaults to None, which uses the server-defined default
temperature (float | None) – The temperature to use. Defaults to None, which uses the server-defined default
top_p (float | None) – The top P to use. Defaults to None, which uses the server-defined default
- Return type:
_GenerativeConfigRuntime
- pydantic model weaviate.classes.query.GroupBy[source]
Bases:
_WeaviateInput
Define how the query’s group-by operation should be performed.
Create a new model by parsing and validating input data from keyword arguments.
Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.
self is explicitly positional-only to allow self as a field name.
- field number_of_groups: int [Required]
- field objects_per_group: int [Required]
- field prop: str [Required]
- _abc_impl = <_abc._abc_data object>
- class weaviate.classes.query.HybridFusion(*values)[source]
Bases:
str
,BaseEnum
Define how the query’s hybrid fusion operation should be performed.
- RANKED = 'FUSION_TYPE_RANKED'
- RELATIVE_SCORE = 'FUSION_TYPE_RELATIVE_SCORE'
- class weaviate.classes.query.HybridVector[source]
Bases:
object
Use this factory class to define the appropriate classes needed when defining near text and near vector sub-searches in hybrid queries.
- static near_text(query, *, certainty=None, distance=None, move_to=None, move_away=None)[source]
Define a near text search to be used within a hybrid query.
- Parameters:
query (str | List[str]) – The text to search for as a string or a list of strings.
certainty (float | None) – The minimum similarity score to return. If not specified, the default certainty specified by the server is used.
distance (float | None) – The maximum distance to search. If not specified, the default distance specified by the server is used.
move_to (Move | None) – Define the concepts that should be moved towards in the vector space during the search.
move_away (Move | None) – Define the concepts that should be moved away from in the vector space during the search.
- Returns:
A _HybridNearText object to be used in the vector parameter of the query.hybrid and generate.hybrid search methods.
- Return type:
- static near_vector(vector, *, certainty=None, distance=None)[source]
Define a near vector search to be used within a hybrid query.
- Parameters:
certainty (float | None) – The minimum similarity score to return. If not specified, the default certainty specified by the server is used.
distance (float | None) – The maximum distance to search. If not specified, the default distance specified by the server is used.
vector (Sequence[int | float] | Sequence[Sequence[int | float]] | Mapping[str, Sequence[int | float] | Sequence[Sequence[int | float]] | _ListOfVectorsQuery[Sequence[Union[int, float]]] | _ListOfVectorsQuery[Sequence[Sequence[Union[int, float]]]]])
- Returns:
A _HybridNearVector object to be used in the vector parameter of the query.hybrid and generate.hybrid search methods.
- Return type:
- weaviate.classes.query.BM25Operator
alias of
BM25OperatorFactory
- pydantic model weaviate.classes.query.MetadataQuery[source]
Bases:
_WeaviateInput
Define which metadata should be returned in the query’s results.
Create a new model by parsing and validating input data from keyword arguments.
Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.
self is explicitly positional-only to allow self as a field name.
- field certainty: bool = False
- field creation_time: bool = False
- field distance: bool = False
- field explain_score: bool = False
- field is_consistent: bool = False
- field last_update_time: bool = False
- field score: bool = False
- _abc_impl = <_abc._abc_data object>
- class weaviate.classes.query.Metrics(property_)[source]
Bases:
object
Define the metrics to be returned based on a property when aggregating over a collection.
Use the __init__ method to define the name to the property to be aggregated on. Then use the text, integer, number, boolean, date_, or reference methods to define the metrics to be returned.
See the docs for more details!
- Parameters:
property_ (str)
- boolean(count=False, percentage_false=False, percentage_true=False, total_false=False, total_true=False)[source]
Define the metrics to be returned for a BOOL or BOOL_ARRAY property when aggregating over a collection.
If none of the arguments are provided then all metrics will be returned.
- Parameters:
count (bool) – Whether to include the number of objects that contain this property.
percentage_false (bool) – Whether to include the percentage of objects that have a false value for this property.
percentage_true (bool) – Whether to include the percentage of objects that have a true value for this property.
total_false (bool) – Whether to include the total number of objects that have a false value for this property.
total_true (bool) – Whether to include the total number of objects that have a true value for this property.
- Returns:
A _MetricsBoolean object that includes the metrics to be returned.
- Return type:
- date_(count=False, maximum=False, median=False, minimum=False, mode=False)[source]
Define the metrics to be returned for a DATE or DATE_ARRAY property when aggregating over a collection.
If none of the arguments are provided then all metrics will be returned.
- Parameters:
count (bool) – Whether to include the number of objects that contain this property.
maximum (bool) – Whether to include the maximum value of this property.
median (bool) – Whether to include the median value of this property.
minimum (bool) – Whether to include the minimum value of this property.
mode (bool) – Whether to include the mode value of this property.
- Returns:
A _MetricsDate object that includes the metrics to be returned.
- Return type:
- integer(count=False, maximum=False, mean=False, median=False, minimum=False, mode=False, sum_=False)[source]
Define the metrics to be returned for an INT or INT_ARRAY property when aggregating over a collection.
If none of the arguments are provided then all metrics will be returned.
- Parameters:
count (bool) – Whether to include the number of objects that contain this property.
maximum (bool) – Whether to include the maximum value of this property.
mean (bool) – Whether to include the mean value of this property.
median (bool) – Whether to include the median value of this property.
minimum (bool) – Whether to include the minimum value of this property.
mode (bool) – Whether to include the mode value of this property.
sum – Whether to include the sum of this property.
sum_ (bool)
- Returns:
A _MetricsInteger object that includes the metrics to be returned.
- Return type:
- number(count=False, maximum=False, mean=False, median=False, minimum=False, mode=False, sum_=False)[source]
Define the metrics to be returned for a NUMBER or NUMBER_ARRAY property when aggregating over a collection.
If none of the arguments are provided then all metrics will be returned.
- Parameters:
count (bool) – Whether to include the number of objects that contain this property.
maximum (bool) – Whether to include the maximum value of this property.
mean (bool) – Whether to include the mean value of this property.
median (bool) – Whether to include the median value of this property.
minimum (bool) – Whether to include the minimum value of this property.
mode (bool) – Whether to include the mode value of this property.
sum – Whether to include the sum of this property.
sum_ (bool)
- Returns:
A _MetricsNumber object that includes the metrics to be returned.
- Return type:
- reference(pointing_to=False)[source]
Define the metrics to be returned for a cross-reference property when aggregating over a collection.
If none of the arguments are provided then all metrics will be returned.
- Parameters:
pointing_to (bool) – The UUIDs of the objects that are being pointed to.
- Returns:
A _MetricsReference object that includes the metrics to be returned.
- Return type:
- text(count=False, top_occurrences_count=False, top_occurrences_value=False, min_occurrences=None)[source]
Define the metrics to be returned for a TEXT or TEXT_ARRAY property when aggregating over a collection.
If none of the arguments are provided then all metrics will be returned.
- Parameters:
count (bool) – Whether to include the number of objects that contain this property.
top_occurrences_count (bool) – Whether to include the number of the top occurrences of a property’s value.
top_occurrences_value (bool) – Whether to include the value of the top occurrences of a property’s value.
min_occurrences (int | None) – Only include entries with more occurrences than the given limit.
- Returns:
A _MetricsStr object that includes the metrics to be returned.
- Return type:
- class weaviate.classes.query.Move(force, objects=None, concepts=None)[source]
Bases:
object
Define how the query’s move operation should be performed.
- Parameters:
force (float)
objects (List[str | UUID] | str | UUID | None)
concepts (List[str] | str | None)
- property _concepts_list: List[str] | None
- property _objects_list: List[str] | None
- class weaviate.classes.query.NearMediaType(*values)[source]
Bases:
str
,Enum
The different types of media that can be used in a near_media query to leverage the multi2vec-* modules.
All are available when using multi2vec-bind but only IMAGE is available when using multi2vec-clip.
- AUDIO = 'audio'
- DEPTH = 'depth'
- IMAGE = 'image'
- IMU = 'imu'
- THERMAL = 'thermal'
- VIDEO = 'video'
- pydantic model weaviate.classes.query.QueryNested[source]
Bases:
_WeaviateInput
Define the query-time return properties of a nested property.
Create a new model by parsing and validating input data from keyword arguments.
Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.
self is explicitly positional-only to allow self as a field name.
- field name: str [Required]
- field properties: PROPERTIES [Required]
- _abc_impl = <_abc._abc_data object>
- pydantic model weaviate.classes.query.QueryReference[source]
Bases:
_QueryReference
Define a query-time reference to a single-target property when querying through cross-references.
Create a new model by parsing and validating input data from keyword arguments.
Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.
self is explicitly positional-only to allow self as a field name.
- MultiTarget
alias of
_QueryReferenceMultiTarget
- _abc_impl = <_abc._abc_data object>
- class weaviate.classes.query.NearVector[source]
Bases:
object
Factory class to use when defining near vector queries with multiple vectors in near_vector() and hybrid() methods.
- pydantic model weaviate.classes.query.Rerank[source]
Bases:
_WeaviateInput
Define how the query’s rerank operation should be performed.
Create a new model by parsing and validating input data from keyword arguments.
Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.
self is explicitly positional-only to allow self as a field name.
- field prop: str [Required]
- field query: str | None = None
- _abc_impl = <_abc._abc_data object>
- class weaviate.classes.query.Sort[source]
Bases:
object
Define how the query’s sort operation should be performed using the available static methods.
- static by_creation_time(ascending=True)[source]
Sort by an object’s creation time.
- Parameters:
ascending (bool)
- Return type:
- static by_id(ascending=True)[source]
Sort by an object’s ID in the collection.
- Parameters:
ascending (bool)
- Return type:
- class weaviate.classes.query.TargetVectors[source]
Bases:
object
Define how the distances from different target vectors should be combined using the available methods.
- static average(target_vectors)[source]
Combine the distance from different target vectors by averaging them.
- Parameters:
target_vectors (List[str])
- Return type:
- static manual_weights(weights)[source]
Combine the distance from different target vectors by summing them using manual weights.
- Parameters:
weights (Dict[str, float | List[float]])
- Return type:
- static minimum(target_vectors)[source]
Combine the distance from different target vectors by using the minimum distance.
- Parameters:
target_vectors (List[str])
- Return type:
- static relative_score(weights)[source]
Combine the distance from different target vectors using score fusion.
- Parameters:
weights (Dict[str, float | List[float]])
- Return type:
weaviate.classes.rbac
- class weaviate.classes.rbac.Actions[source]
Bases:
object
- Backups
alias of
BackupsAction
- Cluster
alias of
ClusterAction
- Collections
alias of
CollectionsAction
- Data
alias of
DataAction
- Nodes
alias of
NodesAction
- Roles
alias of
RolesAction
- Tenants
alias of
TenantsAction
- Users
alias of
UsersAction
- class weaviate.classes.rbac.Permissions[source]
Bases:
object
- Nodes
alias of
NodesPermissions
- static backup(*, collection, manage=False)[source]
- Parameters:
collection (str | Sequence[str])
manage (bool)
- Return type:
List[_Permission]
- static cluster(*, read=False)[source]
- Parameters:
read (bool)
- Return type:
List[_Permission]
- static collections(*, collection, create_collection=False, read_config=False, update_config=False, delete_collection=False)[source]
- Parameters:
collection (str | Sequence[str])
create_collection (bool)
read_config (bool)
update_config (bool)
delete_collection (bool)
- Return type:
List[_Permission]
- static data(*, collection, tenant=None, create=False, read=False, update=False, delete=False)[source]
- Parameters:
collection (str | Sequence[str])
tenant (str | Sequence[str] | None)
create (bool)
read (bool)
update (bool)
delete (bool)
- Return type:
List[_Permission]
- static roles(*, role, create=False, read=False, update=False, delete=False, scope=None)[source]
- Parameters:
role (str | Sequence[str])
create (bool)
read (bool)
update (bool)
delete (bool)
scope (RoleScope | None)
- Return type:
List[_Permission]
- static tenants(*, collection, tenant=None, create=False, read=False, update=False, delete=False)[source]
- Parameters:
collection (str | Sequence[str])
tenant (str | Sequence[str] | None)
create (bool)
read (bool)
update (bool)
delete (bool)
- Return type:
List[_Permission]
- static users(*, user, create=False, read=False, update=False, delete=False, assign_and_revoke=False)[source]
- Parameters:
user (str | Sequence[str])
create (bool)
read (bool)
update (bool)
delete (bool)
assign_and_revoke (bool)
- Return type:
List[_Permission]
weaviate.classes.tenants
- pydantic model weaviate.classes.tenants.Tenant[source]
Bases:
BaseModel
Tenant class used to describe a tenant in Weaviate.
- name
The name of the tenant.
- activity_status
TenantActivityStatus, default: “HOT”
Create a new model by parsing and validating input data from keyword arguments.
Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.
self is explicitly positional-only to allow self as a field name.
- field activityStatus: _TenantActivistatusServerValues = _TenantActivistatusServerValues.HOT
- field activityStatusInternal: TenantActivityStatus = TenantActivityStatus.ACTIVE (alias 'activity_status')
- field name: str [Required]
- model_post_init(_Tenant__context)[source]
Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.
- Parameters:
_Tenant__context (Any)
- Return type:
None
- _abc_impl = <_abc._abc_data object>
- property activity_status: TenantActivityStatus
Getter for the activity status of the tenant.
- pydantic model weaviate.classes.tenants.TenantCreate[source]
Bases:
BaseModel
Tenant class used to describe a tenant to create in Weaviate.
- name
the name of the tenant.
- activity_status
TenantCreateActivityStatus, default: “HOT”
Create a new model by parsing and validating input data from keyword arguments.
Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.
self is explicitly positional-only to allow self as a field name.
- field activityStatus: _TenantActivistatusServerValues = _TenantActivistatusServerValues.HOT
- field activityStatusInternal: TenantCreateActivityStatus = TenantCreateActivityStatus.ACTIVE (alias 'activity_status')
- field name: str [Required]
- model_post_init(_TenantCreate__context)[source]
Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.
- Parameters:
_TenantCreate__context (Any)
- Return type:
None
- _abc_impl = <_abc._abc_data object>
- property activity_status: TenantCreateActivityStatus
Getter for the activity status of the tenant.
- pydantic model weaviate.classes.tenants.TenantUpdate[source]
Bases:
BaseModel
Tenant class used to describe a tenant to create in Weaviate.
- name
The name of the tenant.
- activity_status
TenantUpdateActivityStatus, default: “HOT”
Create a new model by parsing and validating input data from keyword arguments.
Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.
self is explicitly positional-only to allow self as a field name.
- field activityStatus: _TenantActivistatusServerValues = _TenantActivistatusServerValues.HOT
- field activityStatusInternal: TenantUpdateActivityStatus = TenantUpdateActivityStatus.ACTIVE (alias 'activity_status')
- field name: str [Required]
- model_post_init(_TenantUpdate__context)[source]
Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.
- Parameters:
_TenantUpdate__context (Any)
- Return type:
None
- _abc_impl = <_abc._abc_data object>
- property activity_status: TenantUpdateActivityStatus
Getter for the activity status of the tenant.
- class weaviate.classes.tenants.TenantActivityStatus(*values)[source]
Bases:
str
,Enum
TenantActivityStatus class used to describe the activity status of a tenant in Weaviate.
- ACTIVE
The tenant is fully active and can be used.
- INACTIVE
The tenant is not active, files stored locally.
- OFFLOADED
The tenant is not active, files stored on the cloud.
- OFFLOADING
The tenant is in the process of being offloaded.
- ONLOADING
The tenant is in the process of being activated.
- HOT
DEPRECATED, please use ACTIVE. The tenant is fully active and can be used.
- COLD
DEPRECATED, please use INACTIVE. The tenant is not active, files stored locally.
- FROZEN
DEPRECATED, please use OFFLOADED. The tenant is not active, files stored on the cloud.
- ACTIVE = 'ACTIVE'
- INACTIVE = 'INACTIVE'
- OFFLOADED = 'OFFLOADED'
- OFFLOADING = 'OFFLOADING'
- ONLOADING = 'ONLOADING'
- HOT = 'HOT'
- COLD = 'COLD'
- FROZEN = 'FROZEN'
- class weaviate.classes.tenants.TenantCreateActivityStatus(*values)[source]
Bases:
str
,Enum
TenantActivityStatus class used to describe the activity status of a tenant to create in Weaviate.
- ACTIVE
The tenant is fully active and can be used.
- INACTIVE
The tenant is not active, files stored locally.
- HOT
DEPRECATED, please use ACTIVE. The tenant is fully active and can be used.
- COLD
DEPRECATED, please use INACTIVE. The tenant is not active, files stored locally.
- ACTIVE = 'ACTIVE'
- INACTIVE = 'INACTIVE'
- HOT = 'HOT'
- COLD = 'COLD'
- class weaviate.classes.tenants.TenantUpdateActivityStatus(*values)[source]
Bases:
str
,Enum
TenantActivityStatus class used to describe the activity status of a tenant to update in Weaviate.
- ACTIVE
The tenant is fully active and can be used.
- INACTIVE
The tenant is not active, files stored locally.
- OFFLOADED
The tenant is not active, files stored on the cloud.
- HOT
DEPRECATED, please use ACTIVE. The tenant is fully active and can be used.
- COLD
DEPRECATED, please use INACTIVE. The tenant is not active, files stored locally.
- FROZEN
DEPRECATED, please use OFFLOADED. The tenant is not active, files stored on the cloud.
- ACTIVE = 'ACTIVE'
- INACTIVE = 'INACTIVE'
- OFFLOADED = 'OFFLOADED'
- HOT = 'HOT'
- COLD = 'COLD'
- FROZEN = 'FROZEN'